Digital Imaging of Root Traits (DIRT) – An online high-throughput phenotyping platform for analysis of root images

Abhiram Das1, Joshua S. Weitz1,2 and Alexander Bucksch1,3

1School of Biology, 2School of Physics and 3School of Interactive Computing, Georgia Institute of Technology

Introduction

Imaging technologies allow rapid acquisition of high-resolution images of the spatial organizations in plant networks such as leaf venation networks, root networks and tree crowns. As a result the volume of data increases and scientific discoveries are rather limited by the availability of analysis platforms than data. The challenges in big data analysis of plant networks include: (i) reconstruction and representation of the network from the imaging data (ii) translation of network analysis to the problem domain of plant networks: (iii) distribution and visualization of network features along with its metadata to not so technical audiences. Existing plant network data[5] analysis platforms lack in integrating data management, analysis and interpretation. We present DIRT as the first fully automated web platform to store, manage and analyze plant networks from field grown crop root images.

Objectives

1. Design a platform to store and manage large collections of crop root networks along with experimental metadata
2. Execute the computation of algorithms to extract root traits as input for large scale gene discovery in plants
3. Enable open-source community science by seamlessly sharing and combining field experimental data

Background

Discovering the relation between plant network morphology and related genes relies on measurement of geometric and topological traits. For significant results, measurement needs to be repeated multiple times per genotype. A number of software tools have been developed [1-4] to estimate traits from images, especially from crop roots grown in laboratory environments such as gellan gum and transparent soil replacements, limiting the observation to just few weeks of growth. However, mature root systems from real soil conditions pose greater challenge because of network size and excavation process. The application of algorithms to images from fields with large variations, faces two main bottlenecks: (1) complex root networks need more computation time demanding the use of super computers 2) wide morphological variation requires large number of images to be collected per genotype, in turn demanding an efficient system to store, manage and share high volume of heterogeneous data.

This is an image of a 15 days old rice root grown in gellan gum medium within the limits of the growth container.

Important features of the platform

1. Create root image collection: Enables user to create private or public root image collection with metadata information. Users have option to add their own metadata information in key-value format
2. Bulk upload root images and its metadata
3. Manage root image collections: Update existing collection’s metadata, share private collections with specific users/members of the community
4. Marked Collections: User have option to maintain multiple marked collections by selecting images from different root image collections
5. Run existing image processing pipeline on high-throughput grid computing environment to compute traits of choice
6. Provides value for predefined set of parameters of the pipeline that automates computation of traits
7. Existing pipeline computes 70 different traits from root images. Users have option to select and compute traits of choice
8. Manage computation to be either private or public and share with specific member of the community
9. View the computed masked images and its traits. Download computed traits in the form of a csv file for further analysis

Results

1. Results enabled by the DIRT platform were recently published in Plant Physiology [6].

Future Work

1. Release of DIRT to the whole root research community through the iPlant cyber-infrastructure including the coupling of heterogeneous high performance computing platforms
2. Integration of advanced statistical analysis such as trait heritability and GWAS
3. Design of a flexible system API to allow extensions for 3D data and their respective algorithms.

References

[1] Lu B et al. (2011) DIRT is a software to analyse root system architecture and development from captured images. Plant and Soil 341(1-2):261-275